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Abstract. The GARCH algorithm is the most renowned generalisation of Engle’s original proposal for
modelising returns, the ARCH process. Both cases are characterised by presenting a time dependent and
correlated variance or volatility. Besides a memory parameter, b, (present in ARCH) and an independent
and identically distributed noise, ω, GARCH involves another parameter, c, such that, for c = 0, the stan-
dard ARCH process is reproduced. In this manuscript we use a generalised noise following a distribution
characterised by an index qn, such that qn = 1 recovers the Gaussian distribution. Matching low statistical
moments of GARCH distribution for returns with a q-Gaussian distribution obtained through maximising

the entropy Sq =
1−∑

i p
q
i

q−1
, basis of nonextensive statistical mechanics, we obtain a sole analytical connection

between q and (b, c, qn) which turns out to be remarkably good when compared with computational sim-
ulations. With this result we also derive an analytical approximation for the stationary distribution for
the (squared) volatility. Using a generalised Kullback-Leibler relative entropy form based on Sq, we also
analyse the degree of dependence between successive returns, zt and zt+1, of GARCH(1, 1) processes. This
degree of dependence is quantified by an entropic index, qop. Our analysis points the existence of a unique
relation between the three entropic indexes qop, q and qn of the problem, independent of the value of (b, c).

PACS. 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems –
05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 89.65.Gh Economics;
econophysics, financial markets, business and management

1 Introduction

The study of time series plays an important role in science
due to their ubiquity in both natural and artificial sys-
tems. They can be found, e.g., in geoseismic (earthquakes),
meteorological (El Niño), physiological (electroencephalo-
graphic profiles) or financial phenomena [1–5]. They com-
prise a sequentially ordered set of random variables, corre-
lated or not, following a certain probability function. For
the uncorrelated case, the most perceptive is to consider
the time series as a succession of values that are associated
to the same probability distribution, like it occurs for the
ordinary random walk, where probability of a certain jump
value is constant in time. This kind of process is defined as
homoskedastic. However, there are phenomena for which
the probability distribution associated to the stochastic
variable at some time step t depends explicitly on t and
these are named heteroskedastic. A simple way to obtain a
heteroskedastic process is to consider the same probability
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b e-mail: tsallis@santafe.edu

functional for all times, but with a varying second-order
moment (or width). In this sort of stochasticity we can
include financial time series, namely return time series,
where second-order moment time dependence is a feature
more than well-known [6]. Aiming to mimic this type of
systems, Engle introduced in 1982 the autoregressive con-
ditional heteroskedasticity (ARCH(s)) (s will be defined
later on) process [7] which is considered a landmark in
finance, comparable to the Black-Scholes equation [8], be-
cause of its wide use [9,10]. Albeit its extraordinary im-
portance, Engle’s model can, in many applications, reach
large values of parameter s which carries out implementa-
tion difficulties. This point inspired T. Bollerslev to gen-
eralise it defining the GARCH(s, r) [11] (G stands for
generalised) which presents a more flexible structure and
enabling that previous data, only correctly mimiced with
large s, could be reproduced with simple GARCH(1, 1)
process. Due to its financial cradle these models are not
well-known in physics, nevertheless they can be very use-
ful to illustrate many traditional physical problems (see,
e.g., [12]). In this article we give sequence to the ansatz
presented by us in a previous work [13] for the ARCH (1)
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process, generalising it to the GARCH(1, 1). Moreover,
we detail the physical justification for why these mod-
els (which present time dependent variance) accommodate
well within the current nonextensive statistical mechanical
theory. We also present an analytical form for the distribu-
tion for the (squared) volatility and analyse the degree of
dependence between successive returns. The manuscript
is organised as follows: in Section 2 we introduce the
GARCH(s, r) process and some of its properties; In Sec-
tion 3.1 we present our connection between GARCH(1, 1)
and nonextensive entropy. In addition, along the lines
of superstatistics [18], we derive the distribution for the
(squared) volatility in Section 3.2. In Section 4, applying
a generalised Kullback-Leibler relative entropy we analyse
the degree of dependence between zt and zt+1 elements
of a GARCH(1, 1) time series and its relation with non-
Gaussianity. Some final comments are made in Section 5.

2 The GARCH model

As settled by Engle [7], we will define an autoregressive
conditional heteroskedastic time series as a discrete time
stochastic process, zt,

zt = σt ωt, (1)

where ωt is an independent and identically distributed
random variable with null mean and unitary variance, i.e.,
〈ωt〉 = 0 and

〈
ω2

t

〉
= 1. The quantity σt, named volatil-

ity is time varying, positive defined and dependent of the
past values of the return zt. According to its definition, the
process presents mean zero, is uncorrelated (〈ztzt′〉 ∼ δtt′)
and has a conditional variance, σ2

t , that evolves in time.
In his original paper Engle [7] suggests a possible ex-

pression for σ2
t defining it as a linear function of past

squared values of zt known as ARCH(s) linear process,

σ2
t = a +

s∑

i=1

bi z2
t−i, (a, bi � 0) . (2)

With the aim of solving the weak points of the ARCH
process that were referred in Section 1, it was introduced
the linear GARCH(s, r) which presents a more flexible
structure for the functional form of σ2

t decreasing the di-
rect influence of z on σ2

t (for details see [11]):

σ2
t = a +

s∑

i=1

bi z2
t−i +

r∑

i=1

ci σ2
t−i, (a, bi, ci � 0) . (3)

Like its predecessor, the GARCH(s, r) model also cap-
tures the recognised tendency for volatility clustering (ev-
ident in financial time series) and is very similar to inter-
mittent fluctuations in turbulent flows [14]: large(small)
values of zt are usually followed by large(small) values.
However, due to the arbitrary sign of ωt, it can be ver-
ified that, although 〈ztzt′〉 ∼ δtt′ , 〈|zt| |zt′ |〉 is not pro-
portional to δtt′ . As a matter of fact it can be verified for
GARCH(1, 1) [11] that the covariance of z2

t ,

cov
(
z2

t , z2
t′
) ≡ 〈

z2
t z2

t′
〉 − 〈

z2
t

〉 〈
z2

t′
〉
,

Fig. 1. Typical GARCH (1, 1) time series obtained for a
Gaussian noise, qn = 1. In (a) we present time series which
correspond to pure Gaussian (�) and ARCH (1) (◦). In (b)
the introduction of parameter c (�) increases the probability
for larger values of |zt|, thus increasing tails in P (z).

Fig. 2. Time dependence of volatility σ for the GARCH pro-
cesses presented in Figure 1. Here is clearly visible the differ-
ence between c = 0 (ARCH) and c �= 0 (GARCH). For the
same values of b we are able to obtain greater values of σ, thus
leading to fatter tails in P (z).

decreases as an exponential law with characteristic time
τ ≡ |ln (b1 + c1)|−1, which, unfortunately, is not in accor-
dance to what is empirically verified in financial time se-
ries [15]. For ci = 0 (∀i), GARCH(s, r) straightforwardly
reduces to the linear ARCH(s). See Figures 1, 2 and 3 for
typical realisations.
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Fig. 3. In (a) correlation between returns z(t + T ) and z(t)
vs. time lag T . All values, except for T = 0, are at noise level.
In (b) correlation between absolute values of returns which
present a decay of time lag T . The run analysed was the same
presented in Figure 1.

Let us continue to focus on the simplest and most
used of the GARCH processes, the GARCH(1, 1), as it
is found to be sufficient to mimic the majority of the
applications. In this case,

σ2
t = a + b z2

t−1 + c σ2
t−1, (4)

so that the process is completely defined when a, b, c, and
the noise nature, Pn (ωt), are specified.

Combining equations (1) and (4) we obtain the nth
order moment for the stationary P (z) distribution, par-
ticularly the second,

σ̄2 ≡ 〈
z2

t

〉
=

〈
σ2

t

〉
=

a

1 − b − c
, (b + c < 1) , (5)

and the fourth moment,

〈
z4

t

〉
= a2

〈
ω4

t

〉 1 + b + c

(1 − b − c) (1 − 2 b c− c2 − b2 〈ω4
t 〉)

. (6)

The condition b + c < 1 is actually important, since it
guarantees that the GARCH(1, 1) corresponds exactly
to an infinite-order ARCH process [16]. Furthermore, for
Gaussian noise (qn = 1), together with the condition that
c is larger than approximately 0.7, the previous condition
not only assures finiteness for second and fourth moments,
but also leads to a significant increase in the covariance

time scale, τ , when compared with ARCH(1) (for details
consult [6]).

Let us now assume, for simplicity and without lack of
generality, a GARCH (1, 1) process that generates time
series with unitary variance, i.e., σ̄2 = 1, which imposes
a = 1− b− c. Now, for this process, the fourth moment is

numerically equal to the kurtosis kx ≡ 〈x4〉
〈x2〉2 , and thus we

get,

〈
z4

t

〉
= kz = kω

(

1 + b2 kw − 1
1 − c2 − 2 b c− b2 kω

)

, (7)

where c2 + 2 b c + b2 kω < 1. It is clear from equation (7)
that GARCH(1, 1) generates distributions P (z) with fat-
ter tails than those of the noise ωt, and fatter also than
the ones obtained with ARCH(1) with the same b [19].
It is also possible to see that parameter c is only use-
ful for b �= 0, otherwise GARCH(1, 1) process reduces
to constructing stationary probability distributions with
a kurtosis kz equal to kw.

3 The ansatz connecting GARCH
and nonextensive statistical mechanics

3.1 Stationary distribution for returns

We shall now establish a connection — physically mo-
tivated in the next subsection — between the present
stochastic process and the current nonextensive statistical
mechanical framework, based on the entropic form [20],

Sq =
1 − ∫ +∞

−∞ [p(z)]q dz

q − 1
, (q ∈ �) . (8)

This entropy is currently referred to as nonextensive be-
cause it is so for independent subsystems. It can how-
ever be extensive in the presence of scale-invariant cor-
relations [21–24]. The associated statistics has been suc-
cessfully applied to phenomena presenting some kind
of scale-invariant geometry, like in low-dimensional dis-
sipative and conservative maps [25], anomalous (cor-
related) diffusion [26], turbulent flows [27], Langevin
dynamics with fluctuating temperature [18,29,30], long-
range many-body classical Hamiltonians [31], among
many others [32]. Entropy (8) constitutes a gener-
alisation of the Boltzmann-Gibbs (BG) one, namely
SBG = − ∫ +∞

−∞ p(z) ln p(z) dz. Indeed, this celebrated ex-
pression is recovered as the q → 1 limit of entropy (8).

By applying the standard variational principle on en-
tropy (8) with the constraints

∫ +∞
−∞ p(z) dz = 1 and

∫ +∞

−∞
z2 [p(z)]q dz/

∫ +∞

−∞
[p(z)]q dz = σ̄2

q

[33–35] (σ̄2
q is defined as the generalised second-order mo-

ment) we obtain

p(z) =
A

[1 + B (q − 1) z2]
1

q−1
,

(

q <
5
3

)

, (9)
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where
B ≡ 1

σ̄2 (5 − 3 q)
, (10)

σ̄2 ≡
∫ +∞

−∞
z2 p(z) dz, (11)

and

A =
Γ

[
1

q−1

]

√
π Γ

[
3−q
2q−2

]
√

(q − 1) B. (12)

Standard and generalised second-order moments, σ̄2 and
σ̄2

q , are related by σ̄2 = σ̄2
q

3−q
5−3 q . In the limit q → 1, distri-

bution (9) becomes a Gaussian. If q = 3+m
1+m (m = 1, 2, 3...),

distribution (9) recovers the Student’s t-distribution with
m degrees of freedom; if q = n−4

n−2 (n = 3, 4, 5...), it recovers
the so-called r-distribution with n degrees of freedom [36].

Defining the q-exponential function as,

expq(x) ≡ [1 + (1 − q)x]
1

1−q (exp1(x) = ex), (13)

we can rewrite the above distribution as follows,

p(z) = A e−B z2

q , (14)

from now on referred to as q-Gaussian. The fourth mo-
ment of p(z) is,

〈
z4

〉
= 3

(
σ̄2

)2 3 q − 5
5 q − 7

. (15)

Let us now propose the ansatz p(z) � P (z) with
σ̄2 = 1 [13]. Specifically, we will impose the matching of
equations (7) and (15). Again, we assume that the noise
ωt follows the generalised distribution

Pn(ω) =
Aqn

[
1 + qn−1

5−3qn
ω2

] 1
qn−1

,

(

qn <
5
3

)

, (16)

defined by the index qn; its variance equals unity, and
Aqn is uniquely determined through normalization. We
are then able to establish a relation between parameters
b, c and indices qn and q:

b =

√
(q − qn)( f(qn, q) − c2 f(q, qn))

f(qn, q)
− c (q − qn)

f(qn, q)
,

(17)
with f(x, y) = (5 − 3x)(2 − y). For b = c = 0 we
have q = qn. Naturally, the connection indicated in equa-
tion (17) and illustrated in Figure 4 for typical values
of qn reduces, for c = 0, to the one obtained [13] for
the ARCH (1) model (linear finite-order ARCH process),
namely

b =
√

(q − qn)/[(5 − 3qn)(2 − q)],

hence

q =
[
qn + 2b2(5 − 3qn)

]
/

[
1 + b2(5 − 3qn)

]
.

Fig. 4. Diagram (q, b, c) for qn = 1 in (a) and qn = 1.2 in (b).
In (b) we can see that the greatest allowed value of b (c = 0)
is b = 1√

4.2
� 0.488.

To verify the above ansatz we generated, for typical values
of (b, c, qn) and using an algorithm based on equations (1)
and (4), a set of GARCH time series. Then we computed
the corresponding probability density functions and com-
pared them with the histograms (with any adequately cho-
sen interval δ) associated with the q-Gaussian distribution
with q satisfying the ansatz. We compared then the nu-
merical probability density functions (PDFs) with H(z)

H(z) =
∫ z + δ/2

z + δ/2
p (x) dx =

Γ
[

1
q−1

]

2 Γ

[
1

q − 1
− 1

2

]

√
1 − q

π ( 3 q − 5)

×
{

(δ − 2 z) 2F1

(
1
2
,

1
q − 1

;
3
2

;
(q − 1) (δ − 2 z)2

4 (3 q − 5)

)

+ (δ + 2 z) 2F1

(
1
2
, 1

q−1 ;
3
2

;
(q − 1) (δ + 2 z)2

4 (3 q − 5)

)}

,

(18)
where 2F1 is the hypergeometric function. As can be seen
in Figures 5 and 6, the accordance between stationary
PDFs and the PDFs obtained by using, in equation (9),
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Fig. 5. PDFs for a qn = 1 noise and typical values of (b; c) pair.
(a) (0.1; 0.1), q = 1.021 (χ2 = 2.35 × 10−9); (b) (0.1; 0.88),
q = 1.287 (χ2 = 4.59 × 10−10); (c) (0.4; 0.1), q = 1.26
(χ2 = 2.44 × 10−9); (d) (0.4; 0.4), q = 1.38 (χ2 = 3.22×10−7).

the value of q satisfying equation (17), is quite satisfactory.
The values of b and c used in panels of Figures 5 and 6
were chosen aiming to give a general view of the quality
of our propose throughout the domain which in b and c
are allowed to vary keeping finite variance and kurtosis.
In their captions we present also the values of the χ2 error
function,

χ2 ≡ 1
N

N∑

i=1

[P (z) − H (z)]2 .

Fig. 6. PDFs for a qn = 1.2 noise and typical values of
(b; c) pair. (a) (0.1; 0.1), q = 1.211 (χ2 = 8.67 × 10−10);
(b) (0.1; 0.5), q = 1.221 (χ2 = 6.01 × 10−10); (c) (0.3; 0.25),
q = 1.310 (χ2 = 8.11 × 10−9); (d) (0.3; 0.45), q = 1.35
(χ2 = 7.36 × 10−9).

Another way to evaluate the slight discrepancy between
P (z) and p (z) (or H(z)) is to compute the percentual er-
ror in the sixth-order moment between PDFs. The results
presented in Table 1 show that discrepancies are never
larger than 3%, which in practice can be considered negli-
gible. It is interesting to notice the remarkable agreement
at least down to p (z) = 10−6 (typical limit used in finance,
see reference [4]).
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Table 1. Percentual error in the sixth-order moment between
numerical and ansatz PDFs presented in Figures 5 and 6.

qn b c
〈
z6

〉
numerical

〈
z6

〉
ansatz

error (%)

1 0.1 0.2 13.97 14.05 0.60

1 0.1 0.88 66.75 65.46 1.93

1 0.4 0.1 61.45 62.33 1.44

1 0.4 0.4 591.91 517.67 1.75

1.2 0.1 0.1 49.41 49.08 0.67

1.2 0.1 0.5 55.93 55.43 0.89

1.2 0.3 0.25 181.48 179.44 1.13

1.2 0.3 0.45 1416.41 1455.37 2.75

3.2 Stationary distribution for (squared) volatility

The good results of the proposal presented in the previ-
ous sub-section have their explanation in the main fea-
ture of the ARCH class of processes, namely the tem-
poral dependence of the variance [28]. This fact allow
us to think of them along the same lines of Wilk and
W�lodarczyk [29] and of Beck [30] which led to the su-
perstatistics (statistics of statistics) recently advanced by
Beck and Cohen [18]. This approach was developed to
treat driven non-equilibrium systems composed, for in-
stance, of smaller cells in local equilibrium, thus obeying
BG statistics with a distribution PBG ∝ e−βE, E be-
ing the energy. The long-term stationary state presents a
spatio/temporary fluctuating temperature following a dis-
tribution f(β). In the long-term, the probability density
function for the nonequilibrium system comes from BG
statistics associated with the small cells that are averaged
over the various β, i.e.,

Pstationary(E) =
∫

f (β) PBG(E) dβ. (19)

For long times, we can study GARCH as a stationary dif-
fusion process, composed by t increments (or cells), each
of them with a certain distribution width, σt for variable
zt (see illustration in Fig. 7). So, instead of defining the
intensive fluctuating parameter, β, as the inverse temper-
ature, we will define it as an inverse second-order moment,
βσ = 1

2 σ2 . In other words, for each “cell”, variable z fol-
lows a certain qn − Gaussian conditioned to an instanta-
neous second-order moment, σ2

t , which is associated with
a probability distribution, pσ(σ2). The stationary proba-
bility distribution p(z) is thus given by

p(z) =
∫ ∞

0

pσ(σ2) p(z|σ2) d(σ2), (20)

where p(z|σ2) is the conditional probability of having a
value z for the return given a value σ2. The homoskedastic
case corresponds to pσ

(
σ2

)
= δ

(
σ2 − σ̄2

)
. Let us focus,

for now, on the case qn = 1 (Gaussian noise) with

p(z|σ2) =
1√

2 π σ2
e−

z2

2 σ2 . (21)

Fig. 7. Superstatistical illustration for the the 10 first time
steps of a GARCH process with a = b = 0.4 and Gaussian
noise. For this case, each time step (or cell) is characterised by
a certain width (represented by the full line) of the Gaussian
which is associated to the obtained value of z (full circles).

In their proposal Beck and Cohen [18] showed that, if the
intensive parameter β is associated with a Gamma dis-
tribution, then the macroscopic non-equilibrium steady
state follows exactly a q−exponential distribution (see
also [29,30]) when the intensive parameter follows a
Gamma distribution. In other words,

e−β′ E(z)
q =

∫
e−β/b

b Γ (c)

(
β

c

)c−1

e−β E(z) dβ.

Following the reverse line and assuming

p(z) = Pstationary � P (z),

we are lead to a Gamma distribution in βσ or to the fol-
lowing distribution in

(
σ2

)
,

pσ

(
σ2

)
=

exp
(− 1

2κσ2

) (
σ2

)−1−λ

(2κ)λ
Γ [λ]

, (22)

where
λ =

1
q − 1

− 1
2

(23)

and
κ =

1 − q

σ̄2 (3 q − 5)
. (24)

It is interesting to mention that distribution (22), often
called inverted Gamma distribution, is also the station-
ary solution for the Fokker-Planck equation obtained from
stochastic differential equations with multiplicative noise
like (in Itô notation),

dx = −γ (x − θ) dt + κ xdWt,

which is used in stochastic volatility models too, but obvi-
ously in a continuous approach [38]. This resemblance is in
complete agreement with the discrete multiplicative noise
structure for σ2

t recurrence equation (3) and other kinds of
equations [39]. As can be seen in Figure 8, the ansatz gives
also a quite satisfactory description for the probability
distribution in the (squared) volatility, corroborating the
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Fig. 8. The symbols in black represent the cumulative prob-
ability distribution, P�

(
σ2

)
obtained from numerical simula-

tion for a Gaussian noise with b = c = 0.4 . The gray line rep-
resents the same distribution as given by equation (22) with
(κ, λ, σ̄2) = (0.444, 2.125, 1) satisfying equations (23) and (24).

connection between the ARCH class of processes, nonex-
tensive statistical mechanics, and superstatistics. The an-
alytic expressions (22), (23) and (24) can be very useful in
applications related, among others, to option prices [4,37]
where volatility forecasting plays a particularly important
role [40,41].

For the case of a qn-Gaussian noise (with qn > 1) sim-
ilar arguments can be used. However, the achievement of
an analytical solution for equation (20) which generalises
the approach above is not a trivial task.

For the conditional probability p(z |σ2) we know a sat-
isfactory answer [42], namely

p(z|σ2) =
A(qn,σ2)

[
1 + B(qn,σ2) (qn − 1) z2

] 1
qn−1

. (25)

But the same does not happen with pσ

(
σ2

)
. Assuming a

continuous approach in qn, a good ansatz for describing
pσ

(
σ2

)
is

pσ

(
σ2

) ∝ (
σ2

)−1−λ
expqσ

(

− 1
2 κ σ2

)

=
(
σ2

)−1−λ
(

1 +
qσ − 1

2 κ

1
σ2

) 1
1−qσ

, (26)

where qσ is an index which depends on qn, i.e., qσ(qn) such
that qσ(1) = 1. For large σ2,

pσ

(
σ2

) ∼ (
σ2

)−1−λ
. (27)

The integral
∫ ∞
0

σ2 pσ(σ2) d(σ2) should equal the mean
value σ̄2 = a

1−b−c . This yields,

1 + λ − λ qσ

2 κ (λ − 1)
= σ̄2, (28)

and
∫ ∞

−∞
z4

∫ ∞

0

pσ

(
σ2

)
p

(
z‖σ2

)
d

(
σ2

)
dz =

3
(
σ̄2

)2 3 q − 5
5 q − 7

. (29)

Fig. 9. The line in black represent the cumulative probability
distribution, P�

(
σ2

)
obtained from numerical simulation for a

qn−Gaussian noise (qn = 1.15) with (b, c) = (0.5, 0). The gray
line represents the same distribution as given by equation (26)
with (κ, λ, σ̄2) = (0.365, 2.371, 1), and qσ = 1.

From equation (27) and by adjusting numerically
the curves for the cumulated probability distributions,
P�

(
σ2

)
, we were able to determine λ, and then qσ and κ

from equations (28) and (29). The procedure appears to
be valid for values of qn close to unity. From the analy-
sis of some values of qn we verified that the value of qσ

equals 1 for every qn considered. Figures 8 and 9 confirm
that our proposal produces a satisfactory approximation
when compared with numerical simulations, particularly
for large values of volatility (which are, in turn, responsi-
ble for the large returns). For the qn−Gaussian noise case,
although some discrepancy exits for small σ2, the tail is
remarkably good.

4 Degree of dependence between successive
returns

As stated in Section 2, stochastic variables, {zt}, in a
GARCH process are uncorrelated (see Eq. (1)). How-
ever, if we combine equations (1) and (3), we can ver-
ify that they are not independent. More specifically, for
GARCH(1, 1) (σ̄2 = 1), we have

zt =

√

1 + b
(
z2

t−1 − 1
)

+ c

(
z2

t−1

ω2
t−1

− 1
)

ωt. (30)

One of the possible measures of the dependence between
the (zt; zt−1) stochastic variables consists in using a gen-
eralised form of the Kullback-Leibler relative entropy [43],
namely

Iq′(p1, p2) ≡ −
∫

p1(u) lnq′

[
p2(u)
p1(u)

]

du, (31)

where lnq′ (x) ≡ x1−q′−1
1−q′ (q′-logarithm). In the limit

q′ → 1, Iq′ recovers the standard Kullback-Leibler
form [44]. This generalised relative entropy equals zero
whenever p2(u) = p1(u), and has the same sign as q′ oth-
erwise. With these properties we can use Iq′ (with q′ > 0)
as a way to compute the “distance”, in probability space,
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from p2(u) to p1(u). Assume that u is a two dimensional
random variable u ≡ (x, y) so that p1(x, y) represents the
joint distribution of (x, y), and p2(x, y) ≡ h1(x) h2(y),
where h1(x) ≡ ∫

p1(x, y) dy and h2(y) ≡ ∫
p1(x, y) dx are

the marginal distributions. Random variables x and y are
independent if p1(x, y) = p2(x, y). With the functional
Iq′ we can measure the degree of dependence via distance
between probabilities p1(x, y) and p2(x, y). For this case,
u ≡ (x, y) and q′ > 0, it was shown [46] that, besides a
lower bound Iq′ = 0 (total independence of x and y), Iq′

presents, for every value of q
′
, an upper bound (complete

dependence between x and y) given by,

IMAX
q′ (p1, p2) = −

∫ ∫

[p1(x, y)]q
′ {lnq′ h1(x)

+(1 − q′)[lnq′ h1(x)][lnq′ h2(y)]} dx dy. (32)

Dividing equations (31) by (32) we define

Rq′ ≡ Iq′

IMAX
q′

∈ [0, 1] . (33)

This ratio can be used as a criterion for measuring the
degree of dependence between random variables. Indeed,
it presents an optimal q′, noted qop [45], for which the
sensitivity of Rq′ is maximal (qop corresponds to the in-
flexion point of Rq′(q′)). Higher (lower) values of qop rep-
resents lower (higher) degree of dependence [46]. Taking
x = zt and y = zt−1 generated from equation (30), and
applying equation (33), we obtained the curves presented
in Figure 10 for typical values of (b, c, qn). For each set
we determined qop and plotted it versus q obtained from
equation (17): see Figure 11. For both noises that have
been illustrated, qop monotonically decreases with q. For
fixed qn, this (decreasing) curve does not depend on the
values of (b, c). An illustration of this independence is in-
dicated in Figure 11 by using different pairs (b, c) that give
the same q. This fact suggests the existence of a relation
between non-Gaussianity (represented by q), the degree of
dependence quantified with qop, and the noise index qn.
This triangular relation (q,qop,qn) is analogous to another
one which could relate the sensitivity, relaxation and sta-
tionarity in weakly chaotic systems such as those in which
long-range interactions are assumed [47].

Let us now compare these results with others obtained
by empirical analysis of index returns time series [48].
Invoking Drost and Nijman [49] work on the temporal
aggregation of GARCH processes, we can state that a
GARCH process with value q can be interpreted as the
result of the temporal aggregation of another GARCH
process with q′ (q′ ≥ q). So, according to Figure 11, the
temporal aggregation of a GARCH process induces a de-
crease in the dependence degree of new series. However,
this is not what was verified for market data. Altough
non-Guassianity tends to diminish as the time horizon in-
creases, the dependence degree remains the same for lags
at least up to 100 days [48]. This result suggests that the
memory mechanism present in financial markets is more
robust than the multiplicative noise memory mechanism
introduced in volatility equation (3), pointing out that
amendments in volatility expression are needed to correct
this flaw.

Fig. 10. Dependence criterion Rq′ vs. q′ for various
GARCH(1, 1) process with typical (qn, b, c) triplets. In (a)
qn = 1 and (b, c) have been chosen as follows: 1-(0, 0), 2-
(0.05,0), 3-(0.1,0.2), 4-(0.15,0), 5-(0.2,0), 6-(0.2,0.2), 7-(0.25,0),
8-(0.3, 0), 9-(0.4, 0), 10-(0.4, 0.1), 11-(0.4, 0.2), 12-(0.4, 0.4), 13-
(0.5, 0), 14-(0.2, 0.688), 15-(0.35, 0), 16-(0.1, 0). In (b) qn = 1.2
and (b, c) have been chosen as follows: 1-(0, 0), 2-(0.1, 0),
3-(0.1, 0.1), 4-(0.15, 0), 5-(0.2, 0), 6-(0.25, 0), 7-(0.3, 0.1), 8-
(0.377, 0), 9-(0.3, 0.45), 10-(0.48, 0.0). The insets contain the
derivative dRq′/dq′(numerically obtained) for the first four
curves as mere illustration.

Fig. 11. Plot of qop vs. q for typical (qn, b, c) triplets. The
arrow points two examples which were obtained from different
triplets, and nevertheless coincide in what concerns the result-
ing point (q, qop).

5 Concluding remarks

In this article, we have presented a study of the station-
ary statistical properties of the GARCH(1, 1) stochastic
process, which is under specific conditions is equivalent
to an infinite linear ARCH process and that is
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characterised by the exhibition of a time dependent (and
exponentially correlated) volatility. This attribute makes
this system similar to those presenting fluctuations in
some intensive parameter (e.g. temperature), which is at
the basis of superstatistics. Inspired by the intimate con-
nection between superstatistics and nonextensive statis-
tical mechanics, we have obtained an expression linking
the dynamical parameters (b, c) and the noise nature, qn,
with the entropic index q characterising the stationary dis-
tribution for the associated GARCH(1, 1) process. After
numerically testing the validity of the approach for the re-
turn distributions, we have derived analytical expressions
for the squared volatility stationary distribution in the
presence of qn-Gaussian noise. The results are satisfactory
for qn � 1 and compatible with the multiplicative noise
structure of squared volatility recurrence equations in the
same way as models enclosed within the Heston class of
financial models. Then, using the q-generalised Kullback-
Leibler relative entropy, we have quantified the degree of
dependence between successive returns. This analysis led
to an entropic index qop which is optimal in the sense
that the ratio (33) exhibits maximal sensitivity. We then
have verified the existence of a direct relation between
qop, the non-Gaussianity, q, and the nature of the noise,
qn. An interesting property emerged, namely that, what-
ever be the pair (b, c) that results in a certain q for the
stationary distribution, one obtains the same value of qop.
Consequently, the time series will present the same de-
gree of dependence. Thinking of a GARCH process with
smaller q then another process with index q′ as the con-
volution for a certain aggregation time of the latter, we
have verified that GARCH process does not reproduce
the constancy in the dependence degree previously verified
in empirical analysis of financial markets. The connection
between various entropic indices remind us of the dynami-
cal scenario within which nonextensive statistical mechan-
ics is formulated. Indeed, various entropic indices emerge
therein, which coalesce onto the same value q = 1 if er-
godicity is satisfied. In the present context, this connection
can be analysed as follows. Due to the dynamical charac-
teristics of GARCH(1, 1), non-Gaussian distribution for
returns (q �= 1) comes from temporal dependence on its
second-order moment which is a self-correlated variable.
This correlation, sign of memory in the process, is the re-
sponsible for the breakdown of independence [22] between
zt and zt+1, which in turn reflects on the entropic index
qop. The connection between q and qop opens the door to
the establishment of a relation between the topologies of
phase space and probability space. A careful analysis of
other kind of systems (e.g. long-range Hamiltonian mod-
els, Langevin-like dynamics obeying generalised correlated
Fokker-Plank equations) should give a deep insight onto
this question.
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